BANMo: Building Animatable 3D Neural Models from Many Casual Videos
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Figure 1. Given multiple casual videos capturing a deformable object, BANMo reconstructs an animatable 3D model, including an im-
plicit canonical 3D shape, appearance, skinning weights, and time-varying articulations, without pre-defined shape templates or registered
cameras. Left: Input videos; Middle: 3D shape, bones, and skinning weights (visualized as surface colors) in the canonical space; Right:

Posed reconstruction at each time instance with color and canonical embeddings (correspondences are shown as the same colors).

Abstract

Prior work for articulated 3D shape reconstruction of-
ten relies on specialized sensors (e.g., multi-camera sys-
tems), or pre-built 3D deformable models (e.g., SMPL).
Such methods do not scale to diverse sets of objects in the
wild. We present a method that requires neither a special-
ized sensor nor a pre-defined template shape. It builds high-
fidelity, articulated 3D models from many monocular ca-
sual videos in a differentiable rendering framework. Our
key insight is to merge three schools of thought: (1) clas-
sic deformable shape models that make use of articulated
bones and blend skinning, (2) canonical embeddings that
establish correspondences between pixels and a canonical
model, and (3) volumetric neural radiance fields (NeRFs)
that are amenable to gradient-based optimization. We in-
troduce neural blend skinning models that allow for dif-
ferentiable and invertible articulated deformations. When
combined with canonical embeddings, such models allow us
to establish dense correspondences across videos that can
be self-supervised with cycle consistency. On real and syn-
thetic datasets, our method shows higher-fidelity 3D recon-
structions than prior works for humans and animals, with
the ability to render realistic images from novel viewpoints
and poses. Project page: https://banmo-www.github.io/.

*Work done when interning at Meta Al

1. Introduction

We are interested in developing tools that can reconstruct
accurate and animatable models of 3D objects from casu-
ally collected videos. A representative application is con-
tent creation for virtual and augmented reality, where the
goal is to 3D-ify images and videos captured by users for
consumption in a 3D space or creating animatable assets
such as avatars. For rigid scenes, traditional Structure from
Motion (SfM) approaches can be used to leverage large col-
lection of uncontrolled images, such as images downloaded
form the web, to build accurate 3D models of landmarks and
entire cities [1,45,46]. However, these approaches do not
generalize to deformable objects such as family members,
friends or pets, which are often the focus of user content.

We are thus interested in reconstructing 3D deformable
objects from casually collected videos. However, individ-
ual videos may not contain sufficient information to obtain
good reconstruction of a given subject. Fortunately, we can
expect that users may collect several videos of the same sub-
jects, such as filming a family member over the span of sev-
eral months or years. In this case, we wish our system to
pool information from all available videos into a single 3D
model, bridging any time discontinuity.

In this paper, we present BANMo, a Builder of
Animatable 3D Neural Models from multiple casual RGB
videos. By consolidating the 2D cues from thousands of
images into a fixed canonical space, BANMo learns a high-
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fidelity neural implicit model for appearance, 3D shape, and
articulations of the target non-rigid object. The articulation
of the output model of BANMo is expressed by a neural
blend skinning, similar to [5,62,63], making the output an-
imatable by manipulating bone transformations. As shown
in NRSfM [4], reconstructing a freely moving non-rigid ob-
ject from monocular video is a highly under-constrained
task where epipolar constraints are not directly applicable.
In our approach, we address three core challenges: (1) how
to represent 3D appearance and deformation of the target
model in a canonical space; (2) how to find the mapping
between canonical space to each individual frame; (3) how
to find 2D correspondences across images under view and
light changes, and object deformations.

Concretely, we utilize neural implicit functions [29] to
represent color and 3D surface in the canonical space. This
representation enables higher-fidelity 3D geometry recon-
struction compared to approaches based on 3D meshes [62,

1. The use of neural blending skinning in BANMo pro-
vides a way to constrain the deformation space of the tar-
get object, allowing better handling of pose pose variations
and deformations with unknown camera parameters, com-
pared to dynamic NeRF approaches [5,22,33,38]. We also
present a module for fine-grained registration between pix-
els and the canonical space by matching to an implicit fea-
ture volume. To jointly optimize over a large number of
video frames with a manageable computational cost, we ac-
tively sample pixels locations based on uncertainty. In a
nutshell, BANMo presents a way to merge the recent non-
rigid object reconstruction approaches [62,63] in a dynamic
NeRF framework [5,22, 33, 38], to achieve higher-fidelity
non-rigid object reconstruction. We show experimentally
that BANMo produces higher-fidelity 3D shape details than
previous state-of-the art approaches [63], by taking better
advantage of the large number of frames in multiple videos.

2. Related work

Human and animal body models. A large body of work in
3D human and animal reconstruction uses parametric shape
models [25, 35,59, 69, 70], which are built from registered
3D scans of real humans or toy animals, and serve to re-
cover 3D shapes given a single image and 2D annotations
or predictions (2D keypoints and silhouettes) at test time
[2,3,15,15,68]. Although parametric body models achieve
great success in reconstructing categories for which large
amounts of ground-truth 3D data are available (mostly in
the case of human reconstruction), it is challenging to apply
the same methodology to categories with limited 3D data,
such as animals and humans in diverse sets of clothing.

Category reconstruction from image/video collections.
A number of recent methods build deformable 3D models
of object categories from images or videos with weak 2D
annotations, such as keypoints, object silhouettes, and op-

tical flow, obtained from human annotators or predicted by
off-the-shelf models [7, 12, 16, 20,21, 58,66]. Such meth-
ods often rely on a coarse shape template [18, 53], and are
not able to recover fine-grained details or large articulations.
Recently, HDNet [10] leverages social media videos and
DensePose human model to learn high-fidelity depth esti-
mators for clothed human.
Category-agnostic video shape reconstruction. Non-
rigid structure from motion (NRSfM) methods [4, 8, 17,
, 43] reconstruct non-rigid 3D shapes from a set of 2D
point trajectories in a class-agnostic way. However, due
to difficulties in obtaining accurate long-range correspon-
dences [40, 49], they do not work well for videos in the
wild. Recent efforts such as LASR and ViSER [62, 63] re-
construct articulated shapes from a monocular video with
differentiable rendering. As our results show, they may still
produce blurry geometry and unrealistic articulations.
Neural radiance fields. Prior works on NeRF optimize a
continuous scene function for novel view synthesis given
a set of images, often assuming the scene is rigid and
camera poses can be accurately registered to the back-
ground [11,23,27-29,57]. To extend NeRF to dynamic
scenes, recent works introduce additional functions to de-
form observed points to a canonical space or over time
[22,33,34,38,52,55]. However, they heavily rely on back-
ground registration, and fail when the motion between ob-
jects and background is large. Moreover, the deformations
cannot be explicitly controlled by user inputs. Similar to our
goal, some recent works [24, 32,36, 37,47] produce pose-
controllable NeRFs, but they rely on a human body model,
or synchronized multi-view video inputs.

3. Method

We model the deformable object in a canonical time-
invariant space, i.e. the “rest” body pose space, that can
be transformed to the “articulated” pose in the camera space
at each time instance with forward mappings, and transform
back with backward mappings. We use implicit functions to
represent the 3D shape, color, and dense semantic embed-
dings of the object. Our neural 3D model can be deformed
and rendered into images at each time instance via differ-
entiable volume rendering, and optimized to ensure consis-
tency between the rendered images and multiple cues in the
observed images, including color, silhouette, optical flow,
and 2D pixel feature embeddings. We refer readers to an
overview in Fig. 2 and a list of notations in the supplement.

We employ neural blend skinning to express object ar-
ticulations similarly to [18, 62] but modify it for im-
plicit surface representations rather than meshes. Our self-
supervised semantic feature embedding produces dense pix-
elwise correspondences across frames of different videos,
which is critical for optimization on large video collections.
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Figure 2. Method overview. BANMo optimizes a set of shape and deformation parameters (Sec. 3.1) that describe the video observations
in pixel colors, silhouettes, optical flow, and higher-order features descriptors, based on a differentiable volume rendering framework.
BANMOo uses a neural blend skinning model (Sec. 3.2) to transform 3D points between the camera space and the canonical space, enabling
handling large deformations. To register pixels across videos, BANMo jointly optimizes an implicit canonical embedding (CE) (Sec. 3.3).

3.1. Shape and Appearance Model

We first represent shape and appearance of deformable
objects in a canonical time-invariant rest pose space and
then model time-dependent deformations by a neural blend
skinning function (Sec. 3.2).

Canonical shape model. In order to model the shape and
appearance of an object in a canonical space, we use a
method inspired by Neural Radiance Fields (NeRF) [29].
A 3D point X* € R3 in a canonical space is associated
with three properties: color ¢ € R3, density o € [0, 1], and
a learned canonical embedding ) € R'S. These properties
are predicted by the Multilayer Perceptron (MLP) networks:

c' = MLP.(X*, v, w!), (D
g = Fﬁ(MLPSDF(X*)), (2)
1 = MLP,(X"). 3)

As in NeRF, color ¢! depends on a time-varying view di-
rection v!€R? and a learnable environment code w!cR5*
that is designed to capture environment illumination condi-
tions [27], shared across frames in the same video.

The shape is given by MLPgpg, computing the Signed-
Distance Function (SDF) of a point to the surface. To con-
vert SDF to density o € [0, 1] for volume rendering, we
use I'g(+), the cumulative of a unimodal distribution with
zero mean and §3 scale, such as Sigmoid(5x). § is a single
learnable parameter that controls the solidness of the object,
approaching zero for solid objects [56, 64]. In practice, we
use the cumulative of Laplace distribution. Compared with
ReLU of Softplus, it provides a principled way of extracting
surface as the zero level-set of the SDF.

Finally, the network 1) maps points to a feature descrip-
tor (or canonical embedding) that can be matched by pixels
from different viewpoints, enabling long-range correspon-
dence across frames and videos. This feature can be in-
terpreted as a variant of Continuous Surface Embeddings

(CSE) [30] but defined volumetrically and fine-tuned in a
self-supervised manner (described in Sec 3.3).
Space-time warping model. We consider a pair of time-
dependent warping functions: forward warping function
Wbt . X* — X! mapping canonical location X* to
camera space location X' at current time and the backward
warping function Wt : X — X* for inverse mapping.
Prior work such as Nerfies [33] and Neural Scene Flow
Fields (NSFF) [22] learn deformations assuming that (1)
camera transformations are given, and (2) the residual ob-
ject deformation is small. As detailed in Sec. 3.2 and
Sec. 3.4, we do not make such assumptions; instead, we
adopt a neural blend-skinning model that can handle large
deformations, but without assuming a pre-defined skeleton.
Volume rendering. To render images, we use the volume
rendering in NeRF [29], but modified to warp the 3D ray to
account for the deformation [33]. Specifically, let x* € R?
be the pixel location at time ¢, and Xf» € R3 be the i-th 3D
point sampled along the ray emanates from x*. The color ¢
and the opacity o € [0, 1] of the pixel are given by:

Z% Zn,

where N is the number of samples, 7; is the probability X!
visible to the camera and is given by 7; = H;;ll pi(1—p;).
Here p; = exp (—0;d;) is the probability that the photon
is transmitted through the interval §; between the i-th X!
sample and the next, and ; = o (W% (X1)) is the density
from Eq. 2. Note we pull back the ray points in the camera
space to the canonical space using the warping W%, as
the color and density are defined in the canonical space.

Besides color and opacity, we compute the expected ray-
surface intersection in the canonical space:

W“_ Xt o(x

X*(xt) = Z 7 (W (X)) )



To render 2D flow, we push forward the backward warped
ray points to another time ' via forward warping W'~ to
find its expected 2D re-projection:

N
x' =Y (W (W xD)),©)

i=1

where II*' is the projection matrix of a pinhole camera.
We optimize video-specific IT'' given a rough initialization.
With this, we compute a 2D flow rendering as:

F(x't—=t) =x! —xt. (6)
3.2. Deformation Model via Neural Blend Skinning

We define mappings W%~ and W% *~ based on a neural

blend skinning model approximating articulated body mo-
tion. Defining invertible warps for neural deformation rep-
resentations is difficult [5]. Our formulation represents 3D
warps as compositions of weighted rigid-body transforma-
tions, each of which is differentiable and invertible.
Blend skinning deformation. Given a 3D point X' at time
t, we wish to find its corresponding 3D point X* in the
canonical space. Conceptually, X* can be considered as
points in the “rest” pose at a fixed camera view point. Our
formulation finds mappings between X* and X* by blend-
ing the rigid transformations of B bones (3D coordinate
systems). Let G € SE(3) be aroot body transformation of
the object from canonical space to time ¢, and J; € SE(3)
be a rigid transformation that moves the b-th bone from its
“zero-configuration” to deformed state ¢, then we have

Xt — Wt,%(x*) — Gt (Jt’A)X*), (7)
X* — Wt,(—(xt) _ Jlf,(—((Gt)—lxt)’ (8)

where J~ and J%* are weighted averages of B rigid
transformations {AJ!},cp that move the bones between
rest configurations (denoted as J;) and time ¢ configura-
tions J?, following linear blend skinning deformation [9]:

B B
I =N WAL, IV =Y W AT
b=1 b=1

€))

W, ™ and W, represent blend skinning weights for
point X* and X! relative to the b-th bone (described fur-
ther below), and AJ! = J¢J; 1.

Latent pose code. We represent root pose G! and body
pose J;,Ji with angle-axis rotations and 3D translations,

regressed from MLPs:
G!' = MLPg(w!), J!=MLP;(w)) (10)

where w and w} are 128-dimensional latent codes for root
pose and body pose at frame ¢ respectively. Similarly, we

have J; = MLP;(w;) and wj is the 128-dimensional
latent code for the rest body pose. To stabilize the op-
timization of poses, we leverage temporal smoothness by
representing body pose code with a Fourier embedding [29]
w} = F(t), where the t = m is normalized across
videos, and the maximum frequgricy of Fourier basis is de-
termined by the sampling rate after normalization. Com-
pared with directly optimizing SE(3) poses, we find such
over-parameterized representations converges faster with
stochastic first-order gradient methods.
Skinning weights. Similar to SCANimate [39], we define
a skinning weight function S : (X,w;) — W € R? that
assigns X to bones given body pose code w;. To compute
the forward and backward skinning weights in Eq. 9, we
apply S separately at rest pose as well as time ¢ pose, and
we have Wi = §(X*, wj), Whe = §(X*, wi).
Directly representing S as neural networks can be diffi-
cult to optimize. Therefore, we condition neural skinning
weights on explicit 3D Gaussian ellipsoids that move along
with the bone coordinates. Following LASR [62], the Gaus-
sian skinning weights are determined by the Mahalanobis
distance between X and the Gaussian ellipsoids:

W, = (X - C)TQy(X - Cyp), (11)

where Cy is the bone center and Qp = VgAng is the pre-
cision matrix composed by bone orientation matrix V; and
scale AJ. Bone centers and orientations are transformed
from the “zero-configurations™ as (V;|C;) = J,, (V}|C}).
AY, VY and CY are learnable parameters and J;, are time-
variant body poses parameters determined by body pose
code w; and wyj.

To model the skinning weights for fine geometry, we find
it helpful to add delta skinning weights after the coarse com-
ponent is well-optimized. Delta skinning weights are rep-
resented as a coordinated-MLP W = MLPA (X, wy).
The final skinning function is the softmax-normalized sum
of the coarse and fine components,

W= S(Xv wb) = Osoftmax (Wa + WA) (12)

The Gaussian component regularizes the skinning weights
to be spatially smooth and temporally consistent, and
handles large deformations better than purely implicitly-
defined ones. Furthermore, our formulation of the skinning
weights are dependent on only pose status by construction,
and therefore regularizes the space of skinning weights.

3.3. Registration via Canonical Embeddings

To register pixel observations at different time instances,
BANMo maintains a canonical feature embedding that en-
codes semantic information of 3D points in the canonical
space, which can be uniquely matched by the pixel features,
and provide strong cues for registration via a joint optimiza-
tion of shape, articulations, and embeddings (Sec. 3.4).
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Figure 3. Canonical Embeddings. We jointly optimize an im-
plicit function to produce canonical embeddings from 3D canoni-
cal points that match to the 2D DensePose CSE embeddings [30].

Canonical embeddings matching. Given a pixel at x* of
frame ¢, our goal is to find a point X* in the canonical space
whose feature embedding 1(X*) € R'6 best matches the
pixel feature embedding )% (x") € R'6. The pixel embed-
dings 9! (of frame t) are computed by a CNN. Different
from ViSER [63] that learns embeddings from scratch, we
initialize pixel embeddings with CSE [30, 3 1] that produces
consistent features for semantically corresponding pixels,
and optimize pixel and canonical embeddings jointly. Re-
call that the embedding of a canonical 3D point is computed
as P (X*) = MLP,(X*) in Eq. 3. Intuitively, MLP,, is
optimized to ensure the output 3D descriptor matches 2D
descriptors of corresponding pixels across multiple views.
To compute the 3D surface point corresponding to a 2D

point x¢, we apply soft argmax descriptor matching [13,26]:
X (x') = Y &)X, (13)
Xev*

where V* are sampled points in a canonical 3D grid,
whose size is dynamically determined during optimiza-
tion (see supplement), and S is a normalized feature
matching distribution over the 3D grid: s§f(x!) =

asoftmax(as<¢}(xt),w(X)>), where «a is a learnable

scaling to control the peakness of the softmax function and
<., > is the cosine similarity score.

Self-supervised canonical embedding learning. As de-
scribe later in Eq. 15-16, the canonical embedding is self-
supervised by enforcing the consistency between feature
matching and geometric warping. By jointly optimizing the
shape and articulation parameters via consistency losses,
canonical embeddings provide strong cues to register pixels
from different time instance to the canonical 3D space, and
enforce a coherent reconstruction given observations from
multiple videos, as validated in ablation studies (Sec. 4.3).

3.4. Optimization

Given multiple videos, we optimize all parameters
described above, including MLPs, {MLP., MLPgpr,
MLP,, MLPg, MLP;, MLPA}, learnable codes
{w!, w!, w}, wi} and pixel embeddings ;.

Losses. The model is learned by minimizing three types
of losses: reconstruction losses, feature registration losses,
and a 3D cycle-consistency regularization loss:

L= (ﬁsil + Ligh + 501:) + (ﬂmatch + £2D—cyc) + L3p-cye-

reconstruction losses feature registration losses

Reconstruction losses are similar to those in existing differ-
entiable rendering pipelines [29, 65]. Besides color recon-
struction loss L4, and silhouette reconstruction loss L, we
further compute flow reconstruction losses Lo by compar-
ing the rendered F defined in Eq. 6 with the observed 2D
optical flow F computed by an off-the-shelf flow network:

Ln=Y_ Jle(x) —&(x)|)?, La=Y_ [lo(x") — (x|,

Lop= Y H]’(xt,t%t')—]}(xt,t%t’)

Xt (1)

2
as

where ¢ and § are observed color and silhouette. Addi-
tionally, we define feature matching losses to enforce 3D
points predicted via canonical embedding X*(x') (Eq. 13)
to match the prediction from backward warping (Eq. 4):

Loen = > [X (') = X" ()

and a 2D cycle consistency loss [18,63] that forces the im-
age projection after forward warping of X*(x*) to land back
on its original 2D coordinates:

(16)

o 1 (=05 00) ]

Similar to NSFF [22], we regularize the deformation func-
tion W= (-) and W% * (-) by a 3D cycle consistency loss,
which encourages a sampled 3D point in the camera coor-
dinates to be backward deformed to the canonical space and
forward deformed to its original location:

£3D—cyc = § Ti

i

2
, (7)
2

Wi (W (xh) - X!

where 7; is the opacity that weighs the sampled points so
that a point near the surface receives heavier regularization.

Our optimization is highly non-linear with local minima,
and we consider two strategies for robust optimization.
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Figure 4. Qualitative comparison of our method with prior art [33,63]. From top to bottom: AMA’s samba, casual-cat, eagle.

Root pose initialization. Due to ambiguities between ob-
ject geometry and root poses, we find it helpful to pro-
vide a rough per-frame initialization of root poses (G?! in
Eq. 7), similar to NeRS [67]. Specifically, we train a sepa-
rate network PoseNet , which is applied to every test video
frame. Similar to DenseRaC [60], PoseNet takes a Dense-
Pose CSE [30] feature image as input and predicts the root
pose Gf = PoseNet(1p}), where ¢t € R12x112x16 jg the
embedding output of DensePose CSE [30] from an RGB
image I;. We train PoseNet by a synthetic dataset produced
offline. See supplement for details on training. Given the
pre-computed G/, BANMo only needs to compute a delta
root pose via MLP:

G' = MLPg(w!)GE. (18)

Active sampling over (z, y, t). Inspired by iMAP [48], our
sampling strategy follows an easy-to-hard curriculum. At
the early iterations, we randomly sample a batch of N? pix-
els for volume rendering and compute reconstruction losses.
At the same time, we optimize a compact 5-layer MLP func-
tion to represent the uncertainty over the image coordinate
and frame index: Ij(x,y,t) = MLPy(z,y,t). The un-
certainty MLP is optimized by comparing against the color
reconstruction errors in the current forward step:

Lu=Y"|
x,t

L (x') — U(x!)

19)

Note that the gradient from Ly to Ly (x") is stopped such
that Ly does not generate gradients to parameters besides
MLPy. After 40% of the optimization steps, we re-
place half of the samples with active samples from pixels
with high uncertainties. To do so, we randomly sample
N = 24576 pixels, and evaluate their uncertainties by

passing their coordinates and frame indices to MLPy. Ac-
tive samples dramatically improves reconstruction fidelity,
as shown in Fig. 8.

4. Experiments

Implementation details. Our implementation of implicit
shape and appearance models follows NeRF [29], except
that our shape model outputs SDF, which is transformed to
density for volume rendering. To extract the rest surface, we
find the zero-level set of SDF by running marching cubes
on a 2563 grid. To obtain articulated shapes at each time in-
stance, we articulate points on the rest surface with forward
deformation W=,

Optimization details. We initialize M LPgpg such that
it approximates a unit sphere [65]. We use B = 25 rest
bones, which are initialized with unit scale, identity orien-
tation, and centers uniformly spaced on the initial rest sur-
face. During optimization, we reinitialize the rest bones
at {20%,67%} of total iterations and further encourage
them to stay close to the surface with a sinkhorn diver-
gence loss [6]. In a batch, we sample N/ = 512 im-
age pairs and sub-sample NP = 6144 pixels for render-
ing. The interval between image pairs is randomly chosen
AT € {1,2,4,8,16,32}. To stabilize optimization, we find
Ny needs to roughly match the number of input frames. The
reconstruction quality improves with more iterations and
we find 36k iterations (15 hours on a V100 GPU) already
produces high-fidelity details. Please find a list of hyper-
parameters in supplement.

4.1. Dataset and Metrics

Qualitative: Casual videos dataset. We demonstrate
BANMo’s ability to reconstruct 3D models from casual
videos of animals and humans. Object silhouette and op-
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Table 1. Difference between Nerfies, VISER, and BANMo.

Method shape deformation registration
Nerfies implicit ~ dense SE(3) photometric
ViSER mesh control points  self-supervised feature
BANMo implicit  control points CSE feature

tical flow (for computing reconstruction losses Eq. 14) are
extracted by off-the-shelf models, PointRend and VCN-
robust [14,61]. Two special challenges arise from the casual
nature of the video captures. First, each video collection
contains around 1k images, an order of magnitudes larger
those used in prior work [22,29,33,63], which requires the
method to handle reconstructions at a larger scale. Sec-
ond, the dataset makes no control over camera movement
or object movement. In particular, objects freely moves in a
video and background changes across videos, posing chal-
lenges to standard SfM camera registration pipelines. We
show results on 11 videos (totaling 900 images) of a British
shorthair cat denoted as casual-cat below. Please find
other results in the project webpage.

Quantitative: AMA human dataset. Articulated Mesh
Animation (AMA) dataset [54] contains multi-view videos
captured by 8 synchronized cameras. It provides high-
fidelity ground-truth meshes with clothing. We use 2 sets
of videos of the same actor (swing and samba), total-
ing 2600 frames, as the input to optimization. We use the
ground-truth object silhouettes. Time synchronization and
camera extrinsics are not used.

Quantitative: Animated Objects dataset. We download
free animated 3D models from TurboSquid, including an
eagle model and a model for human hands. We ren-
der them from different camera trajectories with partially
overlapping motions. Each animated object is rendered as 5
videos with 150 frames per video. We provide ground-truth
root poses and object silhouettes to BANMo and baselines.
Metrics. We quantify the results using both Chamfer dis-
tances and F-scores. Chamfer distance computes the av-
erage distance between the ground-truth and the estimated
surface points by finding the nearest neighbour matches, but
it is sensitive to outliers. Therefore, we further report the F-
score at distance thresholds d = 2% of the longest edge of
the axis-aligned object bounding box [50]. To account for
the unknown scale and global rigid motion, we pre-align
the estimated shape to the ground-truth via Iterative Closest
Point (ICP) up to a 3D similarity transformation.

4.2. Reconstruction Results

We compare with Nerfies and ViSER and summarize the
differences in Tab. 1. We show qualitative comparison in
Fig. 4 and quantitative comparison in Tab. 2.

Baseline setup. Nerfies [33] is designed for a single contin-
uously captured video, assuming object root body pose can
be compensated by background-SfM. In our setup, object

Table 2. Quantitative results on AMA and Animated Objects.
3D Chamfer distance (cm, J) and F-score (%, 1) averaged over all
frames. The 3D models for eagle and hands are resized such
that the longest edge of the axis-aligned object bounding box is
2m. * with ground-truth root poses. S: single-video results. All
methods are assigned with the same initial root pose.

AMA-swing Eagle™ Hands”™
Method

CD F@2% CD F@2% CD F@2%
Ours 9.1 57.0 8.1 56.7 7.5 49.6

ViSER 15.7 522 23.0 20.6 16.8 21.3

Ours® 94 568 108 486 105 352
Nerfies®  22.6 13.2 18.4 180 244 14.9

moves and background SfM does not provide root poses
for the object. When focused on the deformable object,
SfM (such as COLMAP) failed to converge due to violation
of rigidity, leading to very few successful registrations (18
over 900 images registered on casual-cat). To make a
fair comparison, we provide Nerfies with rough initial root
poses (obtained from our PoseNet, Sec. 3.4). After opti-
mization, meshes are extracted by running marching cubes
on a 2563 grid. Another baseline, ViSER [63], directly op-
timizes object shape and poses using optical flow, silhou-
ette, and color reconstruction losses. It does not assume
category-level priors such as CSE features, and therefore
applicable to generic object categories. However, ViSER’s
root pose estimation is sensitive to large deformation and a
large number of input frames (more than 20). Since it pro-
duces worse results than our PoseNet, we provide ViSER
the same root poses from our initialization pipeline.

Comparison with Nerfies. Nerfies optimizes SE(3) fields
with photometric error, which fails at large motion and fails
to register pixels across videos. In contrast, BANMo op-
timizes an articulated bones model using “featuremetric”
consistency wrt a pre-trained CSE feature embedding. As
shown in Fig. 4, although single-video Nerfies reconstructs
reasonable 3D shapes of moving objects given rough initial
root pose, it fails to reconstruct large articulations, such as
the fast motion of the cat’s head (2nd row). Furthermore,
as shown in Fig. 10, Nerfies is not able to leverage more
videos to improve the reconstruction quality, while the re-
construction of BANMo improves given more videos. The
results in Tab. 2 suggests BANMo produces more accurate
geometry than Nerfies for all sequences.

Comparison with ViSER. As shown in Fig. 4, ViSER pro-
duces reasonable articulated shapes. However, detailed ge-
ometry, such as ears, eyes, nose and rear limbs of the cat
are blurred out. Furthermore, detailed articulation, such as
head rotation and leg switching are not recovered. In con-
trast, BANMo faithfully recovers these high-fidelity geome-
try and motion. We observed that the neural implicit volume



representation is compliant to topology changes during gra-
dient updates (see Fig. 5), and is therefore able to recover
from bad local optima. In contrast, sub-optimal topology
that happens during optimization, such as inverted faces,
prevents ViSER to improve given more iterations. Com-
pared to meshes with finite number of vertices, implicit
shape representation maintains a continuous geometry, en-
abling us to recover detailed shape without additional cost
in rendering high-res meshes.

LR

25% total iter. 50% total iter. 75% total iter. 100% total iter.

Figure 5. Compliance to topology changes in optimization.
BANMOo incorrectly reconstructs a single rear leg of the dog, but
automatically corrects the topology with gradient updates.

4.3. Diagnostics

We ablate the importance of each component, by using a
subset of videos. To also ablate root pose initialization and
registration, we test on AMA’s samba and swing (325
frames in total). We include exhaustive ablations in supple-
ment, and only highlight crucial aspects of BANMo below.
Root pose initialization. We show the effect of PoseNet
for root pose initialization (Sec 3.4) in Fig. 6: without it,
the root poses (or equivalently camera poses) collapsed to a
degenerate solution after optimization.

Initial cameras Final cameras Initial cameras Final cameras

%\‘ " N i reconstruction L e reconstruction
T - *

Reference Without root pose initialization (Sec. 3.4)

Figure 6. Diagnostics of root pose initialization (Sec.3.4). With
randomly initialized root poses, the estimated poses (on the right)
collapsed to a degenerate solution, causing reconstruction to fail.

Registration. In Fig. 7, we show the benefit of using
canonical embeddings (Sec 3.3), and measured 2D flow
(Eq. 14) to register observations across videos and within a
video. Without the canonical embeddings and correspond-
ing losses (Eq. 15-16), each video will be reconstructed sep-
arately. With no flow reconstruction loss, multiple ghosting
structures are reconstructed due to failed registration.
Active sampling. We show the effect of active sampling
(Sec 3.4) on a casual-cat video (Fig. 8): removing it
results in slower convergence and inaccurate geometry.
Deformation modeling. We demonstrate the benefit of us-
ing our neural blend skinning model (Sec 3.2) on an eagle

samba recon.

single coherent recon.

* | ‘

Reference

swing recon. recon. | recon. 2 recon. 3

w/o feature registration (Sec. 3.3) further remove flow loss (Eq. 14)
Figure 7. Diagnostics of registration (Sec. 3.3). Without canon-

ical embeddings (middle) or flow loss (right), our method fails to
register frames to a canonical model, creating ghosting effects.

-

Reference w/o active sampling (Sec. 3.4) Visualization of active samples (red)

Figure 8. Diagnostics of active sampling over (z,y) (Sec. 3.4).
With no active sampling, our method converges slower and misses
details (such as ears and eyes). Active samples focus on face and
boundaries pixels where the color reconstruction errors are higher.

W s f e £

Reference Neural blend skinning MLP-SE(3)
image (Ours) (Nerfies)

MLP-translation
(NSFF, D-NeRF)

Figure 9. Diagnostics of deformation modeling (Sec.3.2). Re-
placing our neural blend skinning with MLP-SE(3) results in less
regular deformation in the non-visible region. Replacing our neu-
ral blend skinning with MLP-translation as in NSFF and D-Nerf
results in reconstructing ghosting wings due to significant motion.

sequence, which is challenging due to its large wing ar-
ticulations. If we swap neural blend skinning for MLP-
SE(3) [33], the reconstruction is less regular. If we swap for
MLP-translation [22, 38], we observe ghosting wings due
to wrong geometric registration (caused by large motion).
Our method can model large articulations thanks to the reg-
ularization from the Gaussian component, and also handle
complex deformation such as close contact of hands.
Ability to leverage more videos. We compare BANMo to
Nerfies in terms of the ability to leverage more available
video observations. To demonstrate this, we compare the
reconstruction quality of optimizing 1 video vs. 8 videos
from the AMA samba sequences. Results are shown in
Fig. 10. Given more videos, our method can register them
to the same canonical space, improving the reconstruction
completeness and reducing shape ambiguities. In contrast,
Nerfies does not produce better results given more video
observations.

Motion re-targeting. As a distinctive application, we
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1 video 8 videos 1 video 8 videos
BANMo (Ours) Nerfies
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Using 120 frames Using 400 frames Using 800 frames
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Figure 10. Reconstruction completeness vs number of input
videos and video frames. BANMo is capable of registering more
input videos if they are available, improving the reconstruction.

Source model (cat)

SRR

Driving frame Re-targeted pose rending ~ Re-targeted pose

Figure 11. Motion re-targeting from a pre-optimized cat model
to a tiger. Color coded by point locations in the canonical space.

demonstrate BANMo’s ability of to re-target the articula-
tions of a driving video to our 3D model by optimizing the
frame-specific root and body pose codes w’, wf, as shown
in Fig. 11. To do so, we first optimize all parameters over
a set of training videos from our casual-cat dataset.
Given a driving video of a tiger, we freeze the shared model
parameters (including shape, skinning, and canonical fea-
tures) of the cat model, and only optimize the video-specific
and frame-specific codes, i.e. root and body pose codes wy,
wf, as well as the environment lighting code w?.

5. Discussion

We have presented BANMo, a method to reconstruct
high-fidelity animatable 3D models from a collection of
casual videos, without requiring a pre-defined shape tem-
plate or pre-registered cameras. BANMo registers thou-
sands of unsynchronized video frames to the same canon-
ical space by fine-tuning a generic DensePose prior to spe-
cific instances. We obtain fine-grained registration and re-
construction by leveraging neural implicit representation
for shape, appearance, canonical features, and skinning
weights. On real and synthetic datasets, BANMo shows
strong empirical performance for reconstructing clothed hu-
man and quadruped animals, and demonstrates the ability to
recover large articulations, reconstruct fine-geometry, and
render realistic images from novel viewpoints and poses.
Limitations. BANMo uses a pre-trained DensePose-CSE
(with 2D keypoint annotaionts [31]) to provide rough root
body pose registration, and therefore not currently applica-
ble to categories beyond humans and quadruped animals.

To build generic pipelines of deformable 3D model recon-
struction, either a relative root pose estimator or a generic
feature embedding is needed for future work. Further inves-
tigation is needed to extend our method to arbitrary object
categories. Similar to other works in differentiable render-
ing, BANMo requires a lot of compute, which increases lin-
early with the number of input images. We leave speeding
up the optimization as future work.



A. Notations

We refer readers to a list of notations in Tab. 6 and a list
of learnable parameters in Tab. 7.

B. Method details
B.1. Root Pose Initialization

As discussed in Sec. 3.4, to make optimization robust,
we train a image CNN (denoted as PoseNet) to initialize
root body transforms G! that aligns the camera space of
time ¢ to the canonical space of CSE, as shown in Fig. 12.

PoseNet
—

- R -

DensePose
CNN ResNet-18

£ w 2

Input frames

SO(3) initializations

Figure 12. Inference pipeline of PoseNet. To initialize the op-
timization, we train a CNN PoseNet to predict root poses given
a single image. PoseNet uses a DensePose-CNN to extract pixel
features and decodes the pixel features into root pose predictions
with a ResNet-18. We visualize the initial root poses on the right.
Cyan color represents earlier time stamps and magenta color rep-
resent later timestamps.

Preliminary DensePose CSE [30, 31] trains pixel embed-
dings 1)1 and surface feature embeddings 1/ for humans and
quadruped animals using 2D keypoing annotations. It rep-
resents surface embeddings by a canonical surface with N
vertices and vertex features ¢ € RV>*16. A SMPL mesh is
used for humans, and a sheep mesh is used for quadraped
animals. The embeddings are trained such that given an
pixel feature, a 3D point on the canonical surface can be
uniquely located via feature matching.

Naive PnP solution Given 2D-3D correspondences pro-
vided by CSE, one way to solve for G is to use perspective-
n-points (PnP) algorithm assuming objects are rigid. How-
ever, the PnP solution suffers from catastrophic failures
due to the non-rigidity of the object, which motivates our
PoseNet solution. By training a feed-forward network with
data augmentations, our PoseNet solution produces fewer
gross errors than the naive PnP solution.

Synthetic dataset genetarion. We train separate PoseNet,
one for human, and one for quadruped animals. The train-
ing pipeline is shown in Fig. 13. Specifically, we render sur-
face features as feature images 1,q € R112X112X16 gjyen
viewpoints G* = (R*, T*) randomly generated on a unit
sphere facing the origin. We apply occlusion augmenta-
tions [44] that randomly mask out a rectangular region in
the rendered feature image and replace with mean values
of the corresponding feature channels. The random occlu-
sion augmentation forces the network to be robust to out-
lier inputs, and empirically helps network to make robust

10

=~ Generate random CSE feature —
viewpoints rendering \ 1&
_R‘*» _>

Densepose CSE
surface embedding

Augmentation:

PoseNet Random masks

Laeo = || 10g(R'RT)|| —— ,«

Figure 13. Training pipeline of PoseNet. To train PoseNet,
we use DesePose CSE surface embeddings, which is pertained on
2D annotations of human and quadruped animals. We first gen-
erate random viewpoints on a sphere that faces the origin. Then
we render surface embeddings as 16-channel images. We further
augment the feature images with random adversarial masks to im-
prove the robustness to occlusions. Finally, the rotations predicted
by PoseNet are compared against the ground-truth rotations with
geodesic distance.

predictions in presence of occlusions and in case of out-of-
distribution appearance.

Loss and inference. We use the geodesic distance between
the ground-truth and predicted rotations as a loss to update
PoseNet,

Lgeo = ||log(R'RT)[|, R = PoseNet(tma), (20)
where we find learning to predict rotation is sufficient for
initializing the root body pose. In practice, we set the
initial object-to-camera translation to be a constant T =
(0,0,3)T. We run pose CNN on each test video frame to
obtain the initial root poses G = (R, T), and compute a
delta root pose with the root pose MLP:

G' = MLP¢(w!)GL. Q1)

B.2. Optimization details

Canonical 3D grid. As mentioned in Sec 3.3, we define a
canonical 3D grid V* € R20%20%20 5 compute the match-
ing costs between pixels and canonical space locations. The
canonical grid is centered at the origin and axis-aligned
with bounds [Zmin, Zmax)> [Ymin, Ymax)> a0d [Zmin, Zmax]- The
bounds are initialized as loose bounds and are refined dur-
ing optimization. For every 200 iterations, we update the
bounds of the canonical volume as an approximate bound
of the object surface. To do so, we run marching cubes on
a 642 grid to extract a surface mesh and then set L as the
axis-aligned (x, y, z) bounds of the extracted surface.

Near-far planes. To generate samples for volume render-
ing, we dynamically compute the depth of near-far planes
(d},, d}) of frame ¢ at each iterations of the optimization.
To do so, we compute the projected depth of the canon-
ical surface points d! = (II'G'X})s. The near plane is
set as df min(d;) — ez, and the far plane is set as



Table 3. Table of hyper-parameters.

Name Value Description

B 25 Number of bones

N 128 Sampled points per ray

NP 6144 Sampled rays per batch
(H,W) (512,512) Resolution of observed images

d; = max(d;) +er, where e, = 0.2( max(d;) —min(d;)).
To avoid the compute overhead, we approximate the surface
with an axis-aligned bounding box with 8 points.
Hyper-parameters. We use lcycle learning rate scheduler,
which warms-up with a low learning rate to the maximum,
and anneals the learning rate to a final learning rate. We
apply I7init = 2e — 5, Iryae = 5 — 4, [T fing = le — 4.
We refer readers to a complete list of hyper-parameters in
Tab. 3.

Experiment details When running Nerfies on AMA and
animated objects, we found using RGB reconstruction loss
does not produce meaningful results possibly due to the ho-
mogeneous background color. To improve Nerfies results,
we provide it with ground-truth object silhouettes, and op-
timize a carefully balanced RGB+silhouette loss [65].

C. Additional results
C.1. SFM root pose initialization

COLMAP [41,42] failed to converge when focused on
the deformable object due to violation of rigidity, leading to
very few successful registrations (18 over 811 images reg-
istered on casual-cat). A recent end-to-end method,
DROID-SLAM [51], registered all the images but the accu-
racy is low compared to PoseNet, as shown in Tab. 4. We
also tried SFM to estimate and compensate for the camera
motion (using background as rigid anchor), but this did not
help to recover the pose of the object due to its global move-
ment w.r.t. to the background.

Table 4. Evaluation on root pose prediction. Mean and stan-
dard deviation of the rotation error (°) over all frames (). We use
BANMo-optimized poses as ground-truth. Rotations are aligned
to the ground-truth by a global rotation under chordal L2 distance.

Method c-cat c—human ama—human
CSE-PoseNet 18.6+16.2 12.8+8.9 11.8+17.4
DROID-SLAM  65.5+£44.5 55.8£39.2 83.6+50.5

C.2. More ablation study

In Sec. 4.3, we presented qualitative results of diagnos-
tics experiments. In Tab. 5, we report the results of other
ablations followed by analysis.

Table 5. Results on AMA swing and samba. 3D Chamfer dis-
tance (cm, J) and F-score (%, 1) averaged over all frames.

Method CD FR1% FQ@2% F@5%
number-bone=4 9.88 28.1 524 84.1
number-bone=9 9.08 31.2 56.4 86.8
number-bone=16 9.02 31.8 57.2 87.2
number-bone=25 9.08 31.8 57.0 87.1
—w/o in-surface loss 9.14 29.9 54.8 86.7
—quad. embedding 9.70 29.8 542 854
number-bone=64 9.18 31.1 56.6 87.5
number-bone=100 9.11 314 56.7 87.3
pose error €=20° 8.75 30.9 57.0 88.1
pose error €=50° 8.91 29.8 56.1 88.1
pose error €=90° 9.91 28.4 54.8 85.7

coverage=90° (2 vids) 10.61 29.3 54.3 84.1
coverage=180° (4 vids)  8.94 33.0 59.8 87.9
coverage=270° (6 vids)  9.09 29.8 56.1 87.6

active-sample=0% 9.63 29.1 53.7 85.8
active-sample=25% 8.60 32.3 579 88.0
active-sample=50% 9.14 29.9 54.8 86.7

Number and location of bones As shown in the first group
of Tab. 5 and Fig. 14, using too few bones fails to re-
cover all body parts due to over-regularization. Using more
than 16 bones produces good reconstructions, but consumes
more memory when computing skinning weights. Enforc-
ing them to stay close to the surface with a sinkhorn diver-
gence loss improves the results (Tab. 5, L16-17).

#bones=36  #bones=64

#bones=4 #bones=9 #bones=16  #bones=25

Figure 14. Sensitivity to number of bones.

Sensitivity to incorrect initial pose We inject different lev-
els of Gaussian noise into the initial poses, leading to av-
erage rotation errors € € {20,50,90}°. As shown in the
second group of Tab. 5, BANMo is stable up to 50° rotation
error.

Pre-trained embeddings Pre-trained embeddings help
BANMo outperform Nerfies, but it is not crucial given good
initial root poses (e = 12.8 +-8.9°). As shown in Tab. 5, us-
ing embeddings pre-trained for quadruped animals for hu-
man optimization produces slightly worse results.

How much data are needed? To reconstruct a complete
shape, BANMo requires all object surface to be visible from
at least one frame. Beside completeness, more videos al-
lows to estimate better skinning weights and a more regular


https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html#torch.optim.lr_scheduler.OneCycleLR
https://github.com/scipy/scipy/issues/10862
https://www.kernel-operations.io/geomloss/api/pytorch-api.html
https://www.kernel-operations.io/geomloss/api/pytorch-api.html

motion. We evaluate view coverage in the third group of
Tab. 5.

Importance sampling We use active sampling to avoid
sampling from uninformative frames and pixels. It consis-
tently improves reconstruction results as shown in the last
group of Tab. 5.

Bone re-initialization We qualitatively evaluate the effect
of rest bone re-initialization, which re-initializes bone pa-
rameters according to the current estimation of shape. As
shown in Fig. 15, without re-initializing the bones, the opti-
mization may stuck at bad local optima and the final recon-
struction may become less accurate.

[}
o D00
e
o9
o
o
W/o bone reinitialization With bone reinitialization

Figure 15. Effect of bone re-initialization. We find it important
to re-initialize rest bone parameters after finding a better approxi-
mation of object geometry.

Delta skinning weights We qualitatively evaluate the effect
of delta skinning weights. As shown in Fig. 16, without
learning a delta skinning weights specific to each 3D point,
the reconstructed shape and motion may be over-regularized
by the 3D Gaussians.

W/o delta skin. W/ delta skin. ~ W/o delta skin. W/ delta skin.

Figure 16. Effect of delta skinning weights. We find it important
to learn a point-specific delta skinning weight function to recon-
struction motions in high-quality.

C.3. Qualitative results

We refer readers to our supplementary webpage for com-
plete qualitative results.
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Table 6. Table of notations.

Symbol Description
Index
t Frame index, ¢t € {1,...,T}
b Bone index b € {1,..., B} in neural blend skinning
i Point index b € {1,..., N} in volume rendering
Points
X Pixel coordinate x = (x,y)
Xt 3D point locations in the frame ¢ camera coordinate
X* 3D point locations in the canonical coordinate
X* Matched canonical 3D point locations via canonical embedding
Property of 3D points
ceR3 Color of a 3D point
ceR Density of a 3D point
1 € R16 Canonical embedding of a 3D point
W c RP Skinning weights of assigning a 3D point to B bones
Functions on 3D points
WHE(X?)  Backward warping function from X* to X*
WH=(X*)  Forward warping function from X* to X*
S(X, wp) Skinning function that computes skinning weights of X under body pose wy,
Rendered and Observed Images
c/c Rendered/observed RGB image
o/§ Rendered/observed object silhouette image
F/ F Rendered/observed optical flow image

13



Table 7. Table of learnable parameters.

Symbol Description

Canonical Model Parameters
MLP, Color MLP
MLPgspr Shape MLP
MLP, Canonical embedding MLP

Deformation Model Parameters
A% € R3%3  Scale of the bones in the “zero-configuration” (diagonal matrix).
VO € R3*3  Orientation of the bones in the “zero-configuration”.
C’ e R3 Center of the bones in the “zero-configuration”.
MLPA Delta skinning weight MLP
MLP¢ Root pose MLP
MLP,y Body pose MLP
Learnable Codes

w; € R'?®  Body pose code for the rest pose
w! € R1?®  Body pose code for frame ¢
w! € R'?®  Root pose code for frame ¢
wt e R% Environment lighting code for frame ¢, shared across frames of the same video

Other Learnable Parameters
P CNN pixel embedding initialized from DensePose CSE
Qg Temperature scalar for canonical feature matching
B Scale parameter that controls the solidness of the object surface
IT € R3*3 Intrinsic matrix of the pinhole camera model
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